

V6 CO2 Retrieval Development

Edward Olsen, Luke Chen, Stephen Licata

AIRS Science Team Meeting, November 13-16, 2012

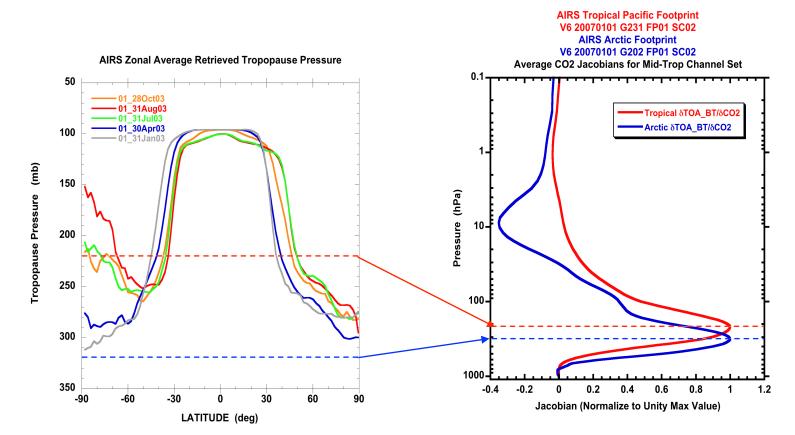
Activities – V6 CO2 Development

Channel selection

- Developed tools to support optimization of channel subsets to better constrain the partial columns of the atmosphere which they represent
 - Common library of software modules shared with optimized retrieval code
 - Ingest model atmospheres and AIRS V5 and V6 PGE output
 - Compute channel-by-channel profiles of weighting functions, contribution functions and Jacobians
 - Sensitivity analysis to optimize channel sets continues in collaborative effort with Paul Dimotakis, Zhijin Li and Ilana Gat

V6 PGE-compatible multi-layer unified CO2 retrieval code

- Developed a single post-processing CO2 retrieval PGE capable of retrieving CO2 in one or more partial columns of the atmosphere independently
 - Execution options chosen via environmental variables
 - Channel lists, priors, SARTA version, QA filtering rules and thresholds
 - Mid-troposphere and mid-stratosphere codes implemented
 - Future addition of lower-troposphere easily accommodated
 - Capable of ingesting V5 and V6 physical retrievals and L1B/L2 CC radiances
 - Can use SARTA V107, V108 or V6
- V5/SARTA V107 mode output digitally identical to V5 Operational PGE output


V6 testing

- Currently using V6.0.2 AIRS L2 data for Jan/Apr/Jul/Oct 2003/2007/2011
- Optimizing channel set selection/latitude weighting and QA filtering

Channel Selection Issues

(sensitivity analysis collaborators: Dimotakis, Li and Gat)

- Sensitivity analysis reveals pressure layer of Jacobian peak of V5 VPD tropospheric CO2 channels is a function of latitude. In addition, the movement of the high latitude tropopause to lower altitudes in January/April increases fraction of TOA radiances in CO2 channels function contributed by stratosphere
 - Solution: modify channel set to shift sensitivity peak lower and minimize stratospheric tail structure; weight channels according to location of Jacobian peaks to maintain pressure level position in atmospheric column

Channel Selection Analysis

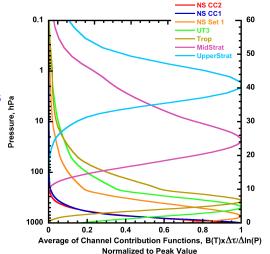
(sensitivity analysis collaborators: Dimotakis, Li and Gat)

Channel Sets

Mid-Trop

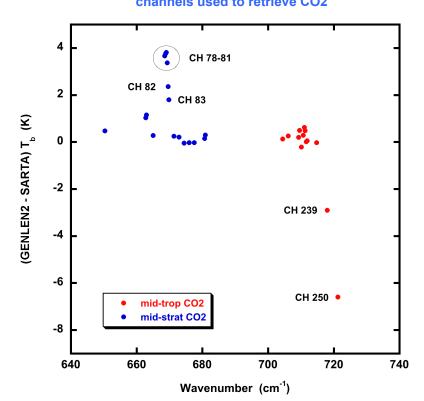
- Jacobians of V5 operational channel set peaks higher in troposphere than contribution functions, hence connection to surface CO2 flux weaker than initially believed
- Preliminary channel set resulting from Jacobian sensitivity analysis results in increased sensitivity to $\Delta CO2$
- Now optimizing set so Jacobian peaks occur lower in the troposphere and in the same pressure layer for all latitudes (requires latitude dependent channel weighting)

Mid-Strat


- Jacobians of initial test set identified via contribution functions not well localized
- Preliminary channel set based on Jacobian sensitivity analysis results in increased sensitivity to Δ CO2 that is more localized in atmospheric column

Lower Trop

- Channels chosen using contribution functions exhibit Jacobians whose peaks occur higher in the troposphere than desired —NS CC2
- To Do: identify and optimize channel set(s) to shift Jacobian peaks as near to the surface as feasible


Note:

- VPD algorithm gives full weight to the measured radiances a
 - Therefore channel contribution functions were employed as the channel selection criteria
 - VPD seeks to minimize the difference between an atmospheric state radiances and the observed radiances
 - Averaging kernels/Jacobians provide ΔCO2 sensitivity information desired by customers studying surface flux
 - Therefore channel selection must primarily be carried out via Jacobian sensitivity analysis

Additional Channel Selection Issue

- SARTA and GENLN2 calculated TOA radiances for same atmospheric state are inconsistent for some channels
 - mid-trop CO2 retrieval channels:
 likely due to GENLN2 line mixing problem at the 721 cm⁻¹ Q-branch
 - mid-strat CO2 retrieval channels:
 likely due to GENLN2 errors in the 670 cm⁻¹ R-branch

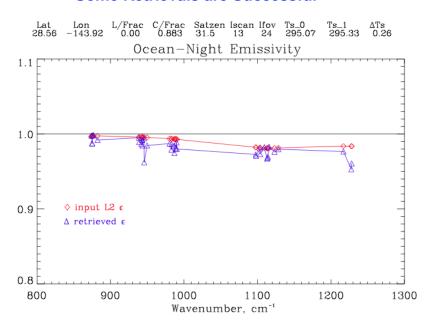
RTA Selection - Analysis & Decision

RTA Selection

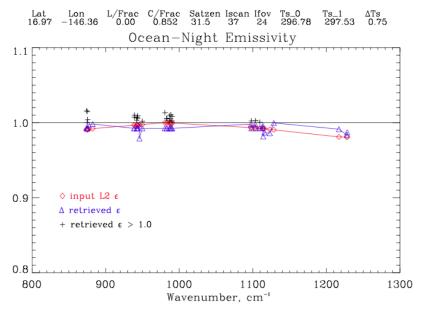
- V6 CO2 retrieval code executes all SARTA versions: V107, V108 and V6
 - Operational V5 CO2 retrieval using V107 SARTA execution time = 5 min/granule/CPU
 - Optimized V6 CO2 retrieval using V108 SARTA execution time = 3 min/granule/CPU (this will be the delivered operational CO₂ RTA)
 - Optimized V6 CO2 retrieval using V6 SARTA execution time = 2.5 hr/granule/CPU (this will be revisited in future to develop a workaround)
- Challenge of V6 SARTA
 - Dynamic recalculation for all 2378 channels, once for every profile passed to the V6 SARTA
 - Updates y-axis offset, due to dynamically changing Doppler shift and module baseline drift
 - Addition of channel-specific deltas from A/B weights table
 - Executed for every perturbation of T, q, O3, CO2 in each iteration step of VPD (300 to 500 times/cluster CO2 retrieval depending upon number of iterations required to converge)
- Compromise choice: V108 SARTA
 - Forward calculated radiances differ from V6 by ≤ 1 %
 - Test results: CO2 retrievals differ from those which result using V6 SARTA by 0.1 ppm to 0.5 ppm

V6 CO2 Retrieval Status and Testing

- V5/SARTA V107 mode assimilating V5 L2 data
 - Compared against operational code retrievals at each step of restructuring/ consolidation of PGE to ensure digitally identical output
- V6/SARTA V108 mode assimilating V6 L2 data
 - Supports calculation of Jacobians as well as of averaging kernels
 - Expanded QA for enhanced dynamic filtering and quality control
 - Uses expanded QA and error reporting provided in V6 L2 products
 - Extracts additional information from SARTA
 - Example: fraction of TOA radiance arising from surface, troposphere, stratosphere
 - Radiance bias correction applied in CO2 V5Op is unnecessary in V6 CO2 retrieval
 - Bias trend of L2 physical retrieval Tair against radiosondes present in V5 has been substantially mitigated in V6
 - Initial retrieval results assimilating V6.0.2 Level 2 data products
 - Error in QA filter implementation drastically reduced yield --- Oops!
 - V6 CO2 retrievals agree well with Matsueda and V5Op retrievals for |lat| ≤ 40 °
 - Deviation at high northern latitude greater in Jan/Apr (-5 ppm to -10 ppm) than Jul/Oct (-2 ppm to -5 ppm)
 - CO2 discrepancy between V5Op and V6 at high northern latitude is under study
 - Currently rerunning with correct QA filter implementation to regain yield
 - Next: optimize channel set and install weighting as a function of latitude to minimize change in location of retrieved layer in the atmospheric column from equator to pole


Atmospheric Infrared Sounder

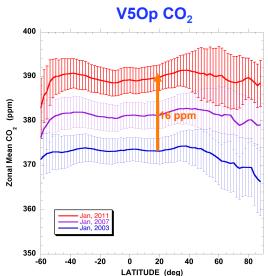
Pasadena, California

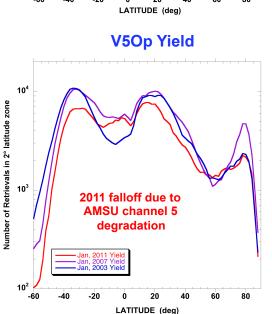

V6 VPD Surface Emissivity Retrieval Development

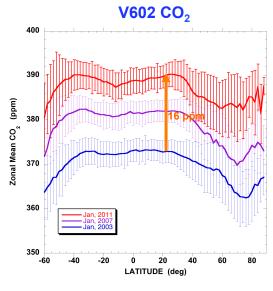
- Accurate accounting of surface contribution required in the lower troposphere CO2 retrieval algorithm. V6 L2 surface emission better than that of V5, but its solution must be included in VPD
 - A module solving for the surface emissivity is being developed

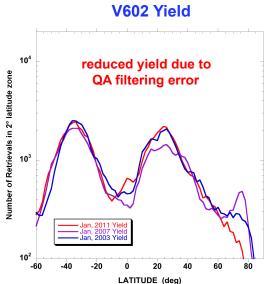
Some Retrievals are Successful

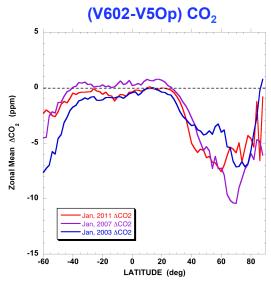
Some Retrievals are Problematical

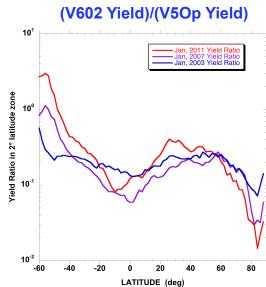



National Aeronautics and Space Administration


Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California


Atmospheric Infrared Sounder


January 2003/2007/2011 Zonal Average V5Op and V602 CO2 and Yield (note: Global Average DCO2 2003->2011 = 16 ppm)

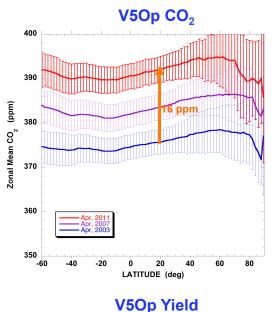


10⁴

Number of Retrievals in 2° latitude zone

10²

National Aeronautics and Space Administration

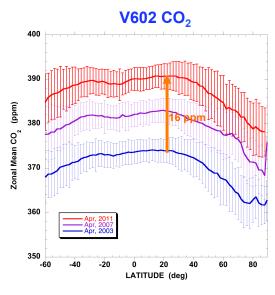

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

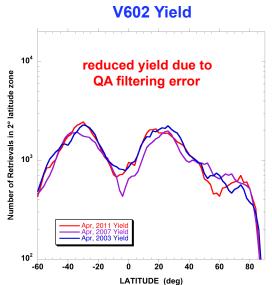
Atmospheric Infrared Sounder

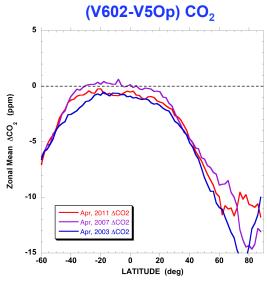
April 2003/2007/2011

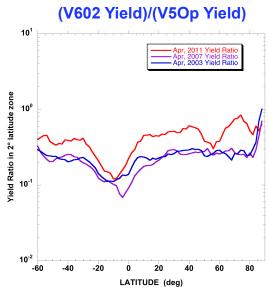
Zonal Average V5Op and V602 CO2 and Yield

(note: Global Average DCO2 2003->2011 = 16 ppm)

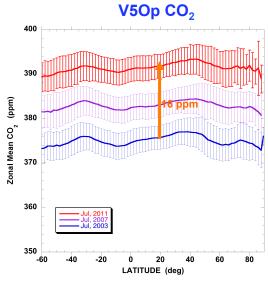


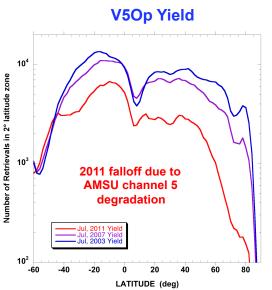

2011 falloff due to AMSU channel 5 degradation

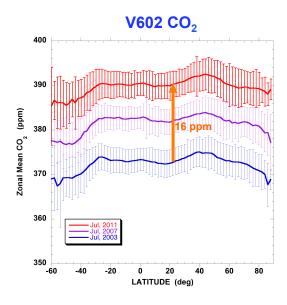

LATITUDE (deg)

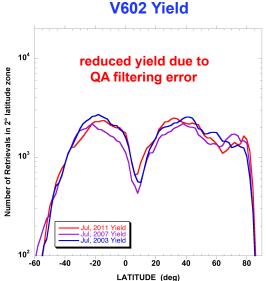


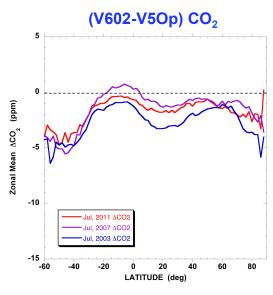
80

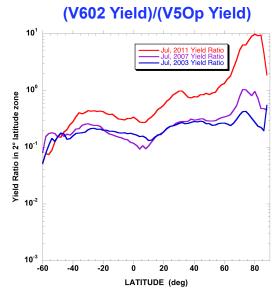







July 2003/2007/2011 Zonal Average V5Op and V602 CO2 and Yield (note: Global Average DCO2 2003->2011 = 16 ppm)

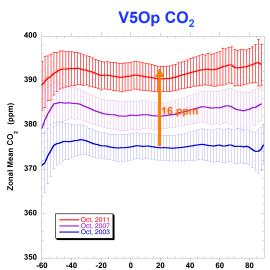

Atmospheric Infrared Sounder



10⁴

Number of Retrievals in 2° latitude zone

10²


-60

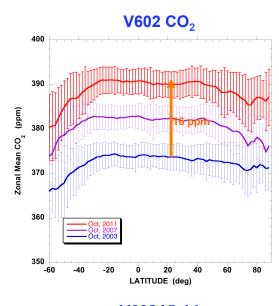
National Aeronautics and Space Administration

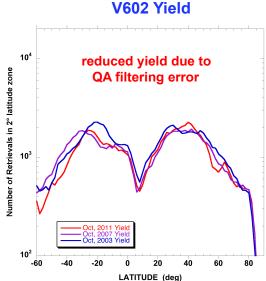
Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

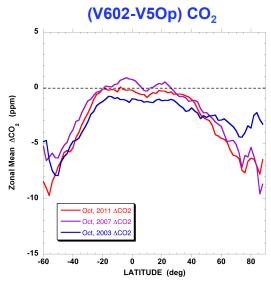
Atmospheric Infrared Sounder

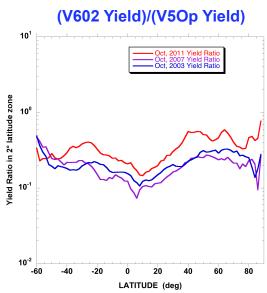
October 2003/2007/2011 Zonal Average V5Op and V602 CO2 and Yield (note: Global Average DCO2 2003->2011 = 16 ppm)

LATITUDE (deg)


V5Op Yield


2011 falloff due to AMSU channel 5 degradation


LATITUDE (deg)



80

FY 2013 Plan

V6 VPD CO2 PGE staged delivery

- Mid-Troposphere
 - Validation runs against aircraft campaigns: INTEX, COBRA, ARCTAS, HIPPO
 - Deliver operational mid-trop V6 CO2 retrieval February, 2013
 - Will contain early version of mid-strat code, which will not be executed for production
- Mid-Stratosphere
 - Validation run against SCIAMACHY
 - Deliver operational mid-strat V6 CO2 retrieval upgrade May, 2013
 - Allows PGE to be operated in strat CO2 retrieval mode
- Lower Troposphere
 - Develop new channel set and QA
 - Develop ocean surface emission module
 - Incorporate into operational V6 CO2 PGE code and perform initial validation study against HIPPO
 - Deliver research version in V6 Op CO2 PGE for assessment September, 2013

Thank You

